分类指标 | Jason Hao's Blog
0%

分类指标

Predifinition

Suppose that there is a set \(s\) to be predicted as class \(c\). A data point in \(s\) is can be predicted as positive (P, means belonging to \(c\)), or negative (N, means belonging to other classes)

Predicted P Predicgted N
P TP FN
N FP TN

TP: Actual Positive, Predicted as Positive FN: Actual Positive, Predicted as Negative TN: Actual Negative, Predicted as Negative FP: Actual Negative, Predicted as Positive

Standard Criteria

Precision

\(P(c)=\frac{TP_c}{TP_c + FP_c}\)

Recall

\(R(c)=\frac{TP_c}{TP_c + FN_c}\)

F1

\(F1(c)=2× \frac{P(c)×R(c)}{P(c)+R(c)}\)

Macro Criteria

Note that the Macro Criteria will highly influenced by the small classes. |C| is the number of classes.

Macro Precision

\(P_{macro}=\sum_{c}\frac{P(c)}{|C|}\)

Macro Recall

\(R_{macro}=\sum_c\frac{R(c)}{|C|}\)

Macro F1

\(F1_{macro}=\sum_c\frac{F1(c)}{|C|}\)

Micro Criteria

\(P_{micro}=R_{micro}=F1_{micro}=\sum_c\frac{TP(c)}{|D|}\) , where |D| is the size of data set.

Weighted Criteria

Weighted Precision

\(P_{weighted}=\sum_c\frac{|c|}{|D|}P(c)\)

Weighted Recall

\(R_{weighted}=\sum_c\frac{|c|}{|D|}R(c)\)

Weighted F1 \(F1_{weighted}=\sum_c\frac{|c|}{|D|}F1(c)\)

参考 (References)